Scraping Baseball-Reference.com with Python BeautifulSoup and pandas


This handy little program scrapes batting statistics data from an HTML table on the Boston Red Sox page at www.baseball-reference.com. It converts that into a pandas DataFrame, then does various cleanup to the data set. And then the data is inserted into a PostgreSQL table.

# -*- coding: utf-8 -*-
"""
Get Red Sox batting statistics from baseball-reference.com.
Turn it into a pandas DataFrame.
Insert the data into PostgreSQL.

"""
import requests
from bs4 import BeautifulSoup
import lxml
import pandas as pd
import os
from sqlalchemy import create_engine
import psycopg2
import io

DATABASE_URL=os.environ['DATABASE_URL']

def red_sox_batting_stats():
    # Get a page from the web
    url = 'https://www.baseball-reference.com/teams/BOS/2018.shtml'

    response = requests.get(url)

    # Process page from the web.
    soup = BeautifulSoup(response.text, 'lxml')

    # Find the batting stats table.
    table = soup.find('table', id='team_batting')

    # Create a matrix:
    # For each row, get the text from each cell.
    # The table has empty cells which must be replaced by something,
    # e.g. 'null', in order to preserve row length.
    outer_list = []
    for row in table.find_all('tr'):
        inner_list = []
        for cell in row.find_all('td'):
            text = cell.text
            inner_list.append(''.join(text) if text else 'null')
        outer_list.append(inner_list)

    # Create a pandas DataFrame from the matrix.  
    df = pd.DataFrame(outer_list)
    df.columns = ['Pos', 'Name', 'Age', 'G', 'PA', 'AB', 'R', 'H', '2B', \
        '3B', 'HR', 'RBI', 'SB', 'CS', 'BB', 'SO', 'BA', 'OBP', 'SLG', 'OPS', \
        'OPS+', 'TB', 'GDP', 'HBP', 'SH', 'SF', 'IBB']

    # Drop rows that do not contain stats.
    df = df[~df['Pos'].isin(['null'])]
    df = df.dropna()
    # Replace 'null' with 0. Replace (strings in parentheses) with nothing.
    # Replace '*' with nothing. Replace '#' with nothing.
    df = df.replace('null', 0).replace(r'\(.*\)', '', regex=True) \
        .replace(r'\*', '', regex=True).replace(r'\#', '', regex=True)
   
    # print(df.to_string()) # Print the DataFrame to the screen.

    # Insert the DataFrame into PostgreSQL
    engine = create_engine(DATABASE_URL)
    conn = engine.raw_connection()
    cur = conn.cursor()
    output = io.StringIO()
    df.to_csv(output, sep='\t', header=False, index=True)
    output.seek(0)
    cur.copy_from(output, 'batting_stats_current_season')
    conn.commit()

if __name__ == '__main__':
    red_sox_batting_stats()







Comments

Popular posts from this blog

Creating a PostgreSQL Database, the Use of Database Templates, and Simple Command Line Tool Commands

Library Book

Date Dimension Table Definition